Fasciculation and Guidance of Spinal Motor Axons in the Absence of FGFR2 Signaling

نویسندگان

  • Rosa-Eva Huettl
  • Teresa Haehl
  • Andrea B. Huber
چکیده

During development, fibroblast growth factors (FGF) are essential for early patterning events along the anterior-posterior axis, conferring positional identity to spinal motor neurons by activation of different Hox codes. In the periphery, signaling through one of four fibroblast growth factor receptors supports the development of the skeleton, as well as induction and maintenance of extremities. In previous studies, FGF receptor 2 (FGFR2) was found to interact with axon bound molecules involved in axon fasciculation and extension, thus rendering this receptor an interesting candidate for the promotion of proper peripheral innervation. However, while the involvement of FGFR2 in limb bud induction has been extensively studied, its role during axon elongation and formation of distinct nervous projections has not been addressed so far. We show here that motor neurons in the spinal cord express FGFR2 and other family members during the establishment of motor connections to the forelimb and axial musculature. Employing a conditional genetic approach to selectively ablate FGFR2 from motor neurons we found that the patterning of motor columns and the expression patterns of other FGF receptors and Sema3A in the motor columns of mutant embryos are not altered. In the absence of FGFR2 signaling, pathfinding of motor axons is intact, and also fasciculation, distal advancement of motor nerves and gross morphology and positioning of axonal projections are not altered. Our findings therefore show that FGFR2 is not required cell-autonomously in motor neurons during the formation of initial motor projections towards limb and axial musculature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct Roles for Secreted Semaphorin Signaling in Spinal Motor Axon Guidance

Neuropilins, secreted semaphorin coreceptors, are expressed in discrete populations of spinal motor neurons, suggesting they provide critical guidance information for the establishment of functional motor circuitry. We show here that motor axon growth and guidance are impaired in the absence of Sema3A-Npn-1 signaling. Motor axons enter the limb precociously, showing that Sema3A controls the tim...

متن کامل

Npn-1 Primes Limbs for Motion

During neural development, the axons of sensory and motor neurons must extend over long distances—meters in some animals—to reach the most distant parts of the limbs. The axons of these neurons adhere tightly together to form spinal nerves that project over these distances to their peripheral targets. This process, called fasciculation, controls axon outgrowth and guidance. However, the underly...

متن کامل

16-P015 The role of BBS proteins in lung development

genes that control motor neuron induction, subtype identity, and target specificity. Mice were mutagenized with ENU and outcrossed to an HB9-GFP transgenic reporter line that expresses GFP in spinal motor neurons and their axons. Litters were analyzed by fluorescence microscopy for recessive mutations that affect motor neuron induction and motor axon projection pattern. We have screened 137 F1 ...

متن کامل

Npn-1 Contributes to Axon-Axon Interactions That Differentially Control Sensory and Motor Innervation of the Limb

The initiation, execution, and completion of complex locomotor behaviors are depending on precisely integrated neural circuitries consisting of motor pathways that activate muscles in the extremities and sensory afferents that deliver feedback to motoneurons. These projections form in tight temporal and spatial vicinities during development, yet the molecular mechanisms and cues coordinating th...

متن کامل

EphA4 constitutes a population-specific guidance cue for motor neurons.

Motor neurons in the ventral neural tube project axons specifically to their target muscles in the periphery. Although many of the transcription factors that specify motor neuron cell fates have been characterized, less is understood about the mechanisms that guide motor axons to their correct targets. We show that ectopic expression of EphA4 receptor tyrosine kinase alters the trajectories of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012